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The essence of mechanical design is interplay between

human creatlvlt_ and incisive analysis. The procedure for

designing a critical component or structure typically runs as:

I. Prepare a candidate design.

2. Analyze the design using the finite element (FE) meth-
od.

(a) Model the designed structure and its loading and

constraints.

(b) Analyze the loaded model.

(c) Assess the validity of the analytical results.

(d) Repeat steps 2(a---c) until acceptable analytical
results are obtained.

3. Assess the candidate design.

4. Repeat steps I--3 until the design is acceptable.

Thus the design process is doubly iterative because cur-
rent FE techniques are not single-shot blackbox tools with

guaranteed reliability; they require human judgement and

"'tuning." It follows that the (in)efficiency of the inner

analysis loop is a strong determinant of the quality of the

final design when the cost of design matters, as is usually the

case. If analysis can be made cheap, fast, and reliable, more

alternatives can be considered and better designs will result.
Let's look more closely at the analysis procedure. During

step 2(a), the design is modeled as a properly connected

mesh of suitably sized and shaped elements (triangles.

quads, etc.) from an element library. Its loading and con-

straints are modeled by assigning suitable constants (e.g.

displacement and load values) to particular nodes of the

mesh. The operative words here are "'suitably sized and

shaped" and "'properly connected". If the elements are too

large or have bad aspect ratios, or if the mesh as a whole

does not obey the combinatorial sharing rules of FE mesh

decompositions, inaccurate and inconsistent results will

accrue because the mathematical conditions underlying the

FE method will have been violated. In the early days of FE

analysis, the analyst was wholly responsible for mesh and

element integrity. Today, computer graphics preprocessors

help ensure proper connectivity, but the selection, place-

ment, and sizing of elements are still the user's responsibil-
ities.

Step 2(b), analysis of the loaded model, is usually per-

formed by using a standard code such as Nastran and Ansys.

This step is largely automatic, and the popular codes are well

debugged though sometimes expensive to run.

For step 2(c), assessing the validity of the results, there

are no standard methods and the analysts judgement plays a

critical role. In the early days, when "results" were huge

tables of numbers, assessment was largely a black art.

Graphics postprocessors, which can display colored contour

plots of stresses, temperatures, and so forth, enable experi-
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Fig. 1 An sutomatlo finite element analysis system.

enced analysts to identify trouble spots (such as regions with

high cross-element gradients) quite effectively.

During step 2(d), the analyst refines the mesh by subdivid-

ing troublesome regions into smaller elements, and then

reanalyzing the whole.

Obviously, automation of the whole process will make

design more systematic and efficient by replacing the ana-

lysrs judgement with mathematical criteria. Two new tools

make automation of the FE mesh feasible:

• Solid modeling technology [I, 2] enables designers to

create and store in CAD systems informationally complete

"master models" of mechanical parts and products. From

there, one should be able to generate FE meshes automati-

cally.

# New algorithms for analyzing errors in a finite element

analysis {3--7] systematic means to automate the results

assessments of step 2(c).

One more tool is needed: a good method for using error

indicators to refine the FE mesh automatically. Another

tool, while not essential, is also very desirable: a method for

analyzing refined meshes selectively or incrementally so that

results already computed for unmodified regions of a mesh

can be reused rather than recomputed.

Figure I shows a design for an automauc analysis system.

In this system, the user defines the structure to be analyzed

in the Solid Modeling System (SMS) together with attributes

such as boundary conditions, loads, material properties, and

certain analytical parameters. The mesh generator produces

a discretized model (the FE mesh) from the geometric

definition and attribute specifications. (Attributes can deter-

mine, for example, the positions of some nodes.) The

analysis processor performs FE analysis: it computes prima-

ry and secondary field variables (in general, the displace-

ments vector at nodal points and the stress tensor within the

elements) for the loaded and constrained FE mesh. Finally.

the error evaluator compares error estimates derived from

the analysis output with specified tolerances, and either

accepts the results or requests a new analysis of a modified

mesh. In the latter case, the error evaluator indicates the

regions in the current model that require refinement. The

inner mesh-generation loop and mesh-analysis loop in Figure

I connote localized mesh refinement and incremental reanal-

ysis.

This approach to automatic FE analysis has been embod-

ied in an experimental 2-D system whose underlying prmci-
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plea will be explained. (Our actual implementation is some-

what different than Figure l for reasons of computational

efficiency.) All meshes and analytical results that appear in

this article were produced with this experimental system.
This anJcle summarizes a moderately complicated topic: for

technical details, see [8].

Automatic Mesh Generation

Most "automatic'" meshing utilities in contemporary CAD

systems actually operate from wireframe descriptions of

objects via mapping algorithms. The user must partition the

domain, which is represented by a collection of edges, into a

set of topologically simple subdomains in which meshes can

be generated automatically. This approach is unsuitable for a

fully automatic meshing procedure because it depends on

human judgement both to guide meshing and to resolve

ambiguities in the wireframe representation.

Genuinely automatic mesh generation must start from an

unambiguous representation of the object to be analyzed,

and thus needs some form of SMS. Nearly all current SMS

systems are based internally on one or both of the represen-

tation schemes illustrated in Figure 2 [1, 2]. Constructive

Solid Geometry (CSG) exploits the notion of "adding" and

"subtracting" simple solid building blocks (via set-union and

set-difference operations). Boundary schemes describe so-

lids indirectly via sets of faces which are represented by sets

of edges that bound finite regions of surfaces. The various

schemes that have been proposed for automatic mesh gener-

ation can be divided into two families: recursive spatial

subdivision (quadtree and octree) schemes, and triangulation
and other schemes. After a brief discussion of the second

family, we will focus on the first.

Triangulation and Other Schemes

Wordenweber [9] and Cavendish [I0] have developed two

different two-stage approaches to automatic triangulation of

solid domains. Wordenweber's procedure first does surface

triangulation of the boundary of the solid, and then performs

solid triangulation in the interior. The tetrahedral meshes

that result are coarse and usually contain distorted elements

that must be refined to be useful for analysis.

In the Cavendish method, points are injected into the

solid, and then a solid triangulation is induced in which the

points become nodes of tetrahedral elements. The main

working tool of the second-stage triangulation is a Delaunay

algorithm that generates valid meshes of tetrahedral ele-

ments within convex hulls of node points. Good methods are

still being sought for inserting points automatically during

the procedure's first stage.

In both of these approaches, mesh refinement is done b._

splitting existing elements. Because refinement is driven

from an FE mesh rather than from the original solid model.

refinement does not improve the geometric approximation of

the original solid. Also, the meshes are not spatially address-
able.

A few commercial CAD systems claim automatic meshing

facilities that can involve triangulation but the principles are

proprietary.Lee's method [II],which has been described

publiclyand implemented in2-D,exploitsthedecomposition

inherentinCSG representationsratherthan triangulationor

spatialsubdivision.Briefly,Lee generates"'natural"distri-

butionsofpointsineach CSG primitiveand then inducesa

uniformspatialdistributionofpointsover the whole object

by "thinning"pointsinregionswhere primitivesoverlap:a

mesh ofquadrilateraland triangularelements isthen gro_n

over the pointsintheobject.

Recursive Spatial Subdivision

We approximate the object to be meshed with a union of

disjoint, variably sized rectangles (in 2-D} or blocks (in 3-D).

These are generated by recursively subdividing a spatial l

region enclosing the object, rather than the object itself.

Figure 3 shows a 2-D example.

The object (a rounded plate with a hole) is "boxed" to
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establish a convenient minimal spatial region, and then t_e
box is decomposed into quadrants. When a quadrant car, be

classified as wholly inside or outside of the object, subd:_ _-

stun ceases: when a quadranl cannot be so classified. 1: it

subdivided into quadrants, So this process continues u_,:
some minimal resolution level is reached. (In 3-D. t_,,-

decomposition proceeds by octants.) Approximations pr,..

duced this way can be represented by logical trees _ho--:

nodes have four or eight sons (see Figure 3). hence t::c

popular names "quadtree" and "octree" {12].

As we will explain, inside cells of a spatial decomposim;r

can be easily converted into "nice" mesh elements. _"..

boundary ceils require further processing lest their literai

translations into mesh elements introduce bogus high-gr:,:,
ent stress regions in the analytical results. We'll deal _;:_:

boundary-cell processing later; for the moment, assume ti',.=

the "'B'" cells in Figure 3 are somehow reshaped into _a:',_

mesh elements that closely approximate the objecfs boun:

ary.

Recursive spatial decompositions have two intrinsic pror-

erties, hierarchical structure and spatial addressability, the:

are central to the mesh refinement and incremental analy:_

techniques described later. These intnnsic properties, pIus

an extnnsic (engineered) property called logical addressabi-

lity. warrant discussion.

Hierarchical structure. The tree structure in Figure 3

results from the subdivision rule used to produce the ¢iecorr-

position, and one can think of the tree as an orgamz;ng or

cataloging structure for data describing particular regions of

space.

Figure 4(a) illustrates this notion by showing a data record

associated with each node of the tree; Figure 4(b) shc_ s data

pertinent to automatic mesh generation that might be stored
within such a record. These include classification of the

spatial region represented by the node as inside, outside, or

on the boundary (Figure 3); shape functions for a fev,

(typically one) finite elements associated with the region:

and properties associated with the finite elements, such as

one or more stiffness matrices, external constraints, and so
forth.

At the lowest level of the tree one finds the smallest spatial

regions and simplest finite elements. As one ascends the tree

the regions become larger (encompassing multiples of four or
eight elemental regions) and the finite elements become

superelements with associated ("assembled") stiffness ma-

trices, collected constraints, and so forth. Such an organiza-

tion is ideally suited to mesh refinement by subdivision and

incremental mesh analysis.

Logical addressability. Given the notion of a tree as an

organizing structure for hierarchical spatial data, how should

such a structure be mapped into computer storage as a data

structure, and how does one gain access to it to store and

retrieve data? The tree diagrams in Figures 3 and 4 suggest

the classical approach: represent a tree with a linked list in

which nodes are addressed indirectly through downward

pointers to sons and perhaps lateral pointers to siblings. The

data record associated with each node is addressed through a
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specialpointerstoredwiththe node.Thus one has accessto

data by followingpointersdownward from the rootof the

tree.

Alternatively. a recursive spatial decomposition can be

viewed as a directly addressable hierarchical grid (see Figure
5) in which the number of cells in each linear dimension is an

integer power of two. The key here is a systematic scheme

for numbering all possible nodes of the underlying tree. In

Figure 5(a), "'1"" represents the enclosing box, 2--5 repre-

sent specific quadrants of "'1," "6"'--"9" represent quad-

rants of "2," and so on. The underlying relation, which can

be applied recursively, is:

The four sons of a parent node P are [4 • P - 2, 4 * P - 1,

4 * P, 4 * P _- 1], and the parent of P is (P + 2) div 4.

These numbers can be used as indices for a single array of

pointers to data records, as shown in Figure 5(c). Thus, to

accessthespatialdatafora particularnode intheunderlying

tree,one merely calculatesan arrayindex througha simple

formulaand followsthe singlepointerstoredthere.This is

usuallymuch fasterthanthepointer-followingmethod noted

above but it carries a storage penalty. Specifically, the

pointer array in Figure 5 (c) must be large enough to

accommodate all possible nodes in the tree.
If the lowest-level grid in Figure 5 (a) requires N°N°K

units of storage (N*N°N*K in 3-De for pointers and data
records,one needs:

K*(2 °'(I -log.__ I)

2n - I

unitsofstoragefortheworst-casewhole tree.where D isthe

dimension of the space and "log" is log-2.Thus a 2-D

hierarchicalgrid requiresat most about 33 percentmore

storagethanthe N*N'K unitsneeded foritslowestlevel:in

3-D only about 14percentmore storageisneeded.

Spatial addressability. Suppose thatwe know thegeomet-

ricsizeand spatialpositionofthe "I" cell(theoverallbox)

inFigure5(a).We can quicklycompute theindexofany cell

inthe hierarchyfrom itssizeand position,and conversely

from an indexwe can quicklycompute the sizeand position

ofthe associatedspatialcell(an example isinTable I).We

have alreadyseen thatcellindicesallow accessthrougha

singlepointerto data associatedwith the ceil,and thus we

can associate,withoutsearching,spatialregionswithstored

data and stored data with spatial regions. This is what is

meant by spatialaddressability.

Inpracticalterms,ifaparticularregionofan objectproves

troublesomeeitherinmesh generationormesh analysis,one

has directaccessto pertinentmesh and analyticaldata to

takelocalizedcorrectivemeasures.

An Automatic Mashing Procedure

Based On Spatial Subdivision

Thisprocedureproduces a spatiallyaddressableFE mesh

embedded inthelowestlevelof a hierarchicalgrid.Higher

levelsof the gridare used dunng constructionofthe mesh

and when the mesh isanalyzed,refined,and incrementally

reanalyzed. The procedure starts with a representation in an

SMS oftheobjecttobe meshed, and operatesintwo stages.

The firststagemeshes the interiorof the objectb.vspatial

subdivisionand the secondextendsthemesh totheobject's

boundary.The followingdescriptionsarein2-D: 3-D exten-

sionsare inthefinalsection.

The use of quadtree and octreemethods for automatic

mesh generationwas pioneeredby Shephard and Yerrv [I3.

14]. Our work is similar to theirs but important differences

willbe noted as we go along.

Stage 1: interior meshing. The object S, Figure 6(a). is

enclosedina box, Figure6(be,which isrecursivelysubdi-

vided intoa gridwhose smallestcellsizedetermines the

elementsize(orelementdensity)oftheinitialFE mesh. This

minimalsizeisdeterminedby subdividingcellsuntilno cell

containsmore than one connected boundary segment of S.

As thesubdivisionproceeds theceilsare classifiedas being

"IN" S,"OUT" ofS,or neitherinnor out ("NIO"). Cells

Computers In Mechanical Engineering Jury_986 61
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classified as IN at higher levels in the hierarchy ar.. ,abdi-

vided to the final grid size without further classificat_, a The
collection of IN cells constitutes the interior mesh <<

The main computational utility used for cell class_;,catJon

is the modified cell classification procedure:

ModClassCell_¢ell, solidi = ("IN", "OUT". "

which is described in [15].
ModClassCeU tests a cell to determine if it is e_:.Jrel_

inside the solid, entirely outside, or undetermined. Ti,e '""

cells are further subdivided and tested. Stage I en,-_:- _th

special operations that reclassify final-sized "'?'" cell, ,:.. IN.
OUT, or NIO. (Some might think that "'?" cells must ._!_ Jys

be NIO. but this is not true for Lee's efficient use ¢,'. :he

classification procedure, which assumes a CSG rel_r=,e:::,-
tion of the solid S [15]. Although CSG implementatlc,: - ,:.:'_

be designed to insure that "?'" cells are NIO. at,,! ',F_

procedure can be used for solids represented in bour_Jav,

format, both approaches are computationally expens:', e,

Specifically, the vertices of each final "?" cell are clas_)-

fled; ff one to three vertices are OUT, the cell is NI(3. In
cases where all four vertices have the same classification the

cell is classified as:

ff (Cell N* S = 0) then "OUT"
else if (Cell N* S = Cell) then "IN"

else "NIO'"

where N* is the regularized intersection operate: [16].

Methods for performing the tests above are described in !8].

We note that the Shephard-Yerry cell classification proce-

dure [13. 14] is based on in/out tests of cell vertices, with

some special operations performed on vertices of cells

having uniform vertex classifications. In/out tests on verti-

ces are insufficient because cells containing holes or thin

sections might be misclassifled.

6?./July 1986Computhr• in Mechanical Engineering
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Stage 2: boundary-region meshing. The task here is tofill
the region between the boundary of the interior mesh

(denoted his in Figure 7) and the boundary bS of the solid S.
Observe that:

bS C (U "NIO'" cells) u blS

Thus bS is usually contained in the NIO cells and special

element-building operations are required, but sometimes

segments of bS coincide with hiS. as at the top of Figure

6(h). and no special processing is needed. We can mesh the

interboundary region by visiting each NIO cell and creating

elements that link the bS segment passing through it to the
interior of the solid.

There are three main issues in this process: to devise a

systematic way to insure that all NIO cells are visited, to

create nodes on bS. and to associate bS nodes v_ith existing
b15 nodes to form valid elements.

All NIO cells can be visited by an exhaustive scan of the

Fig. 10 Iixlumplesof automatically generated FIEmeshes.
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lowest-level grid, or by tree traversal, or by traversal of bS.

Sinceno singleapproach seems to offersubstantialadvan-

tageswe use gr/d-scanforgeneratingthe initialmesh and,

becauseoperationstend tobe more localized,tree-traversal

forremeshingand reana]ysis.

Figure7 shows b$ nodes PI, P2, P3 thatarecreatedinthe

followingmanner. Verticesofb$ withineach NIO cell{e.g.

P2 inFigure7)are taggedas such and are always used as

finiteelementnodes.The verticesofbS areavailableexplic-

itlyifS isrepresentedinboundary format.Ifonly a CSG

representationisavailable,as inour system,a limitedform

ofboundary evaluation[17]must be performed.In 2-D.the

CSG primitivesthatintersectan NIO cellare themselves
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intersected to generate candidate bS vertices; the candidates

are then classified to identify true bS vertices. The an_;ugous

3-D.operations amount to constructing a wireframe repre-

sentation from a CSG representation. Additional bS nodes

are created by intersecting bS with the boundaries of the

NIO cellsCPI and P3 inFigure7).

The generationof validelements withinan NIO ce'.:i+

straightforwardifthe celldoes not contain bS venice,

(comer nodes):nodes on bS and bIS belongingtothe same

NIO cellaresimplylinkedtoform quadrilateraland triangu-

larelements {see the lower left portion of Figure 8). The

treatment is more involved when a corner is present: a

detailed explanation is in [8]. Briefly, the comer node is
linked to bS and his nodes within the cell to form a web of

triangular elements (Figure 8). To avoid generating elements

with poor aspect ratios, the distances between nodes are

checked by using a node neighborhood test..and closel)

spaced nodes are merged into single nodes on bS. Figure 9

provides two examples of this process.
The FE mesh is complete at the end of stage 2 of the

design procedure. A regular mesh of quadrilateral elements

in the interior results from a direct mapping of IN ceils. On

the boundary, NIO cells are associated with quadrilateral

and triangular elements. It is important to note that the FE

mesh inherits the spatial addressability and structure of the

hierarchical grid because e}ements and substructures are

associated with the quadrants of the original decomposition.

Figure 10 shows two examples of meshes generated by our

automatic procedure.

The Shephard-Yerry (SY) boundary, region meshing at co-

rithm performs in/out testson the midpointsand quarter-

points of the edges of NIO ceils, and then maps each NIO

cell into one of a finite number of cut-quadrant forms: each

cut quadrant is then meshed, (We avoid such geometric

approximations by computing exact points of intersection on

bS.) The final stages of the SY algorithm move nodes in NIO

cells to the boundary, and then eliminate ill-formed elements

by using a Lagrangian relaxation procedure to smooth a

triangulated version of the entire mesh. This last operation



destroystheuniformquadrilateralinteriormeshandalso
spatialaddressability,becauseelementsarenotconstrained
toremainin their original cells.

Analysis Of Hierarchical Meshes

We will now summarize a mesh-analysis procedure that

exploiLs the properties of the hierarchical, spatially address-

able meshes already described. Recall that data specifying

the finite elements in the initial mesh are accessed through

the lo_,est level of the hierarchical grid: Figure 4(b) shows

the types of data that are carried.

One analytical simplification is immediately obvious: be-
cause the interior mesh elements are uniform, their stiffness

matrices are identical if the material properties are homoge-

neous and thus only one stiffness matrix need be computed

for all of the interior elements. Other more important analyti-

cal simplifications accrue dunng both assembly and solution

of the system of equations because the hierarchical grid.

which so far has provided spatial substructuring for meshing.
can serve also as a multilevel analytical substructuring

mechanism.

Assembly procedure. Most FE analysis procedures build a

stogie stiffness matrix to cover the whole domain. Our
assembler builds and stores stiffness matrices for every non-

OUT ceil in the hierarchical gad. This is done from the

bottom up (see Figure 11) by assembling son matrices and

"condensing out" interior degrees-of-freedom to build par-

ent matrices at each level. The parent nodes of the interior

mesh with identical (uniform) sons to yield identical sub-

structures and need be assembled only once. The mesh

generator tags identical interior-mesh nodes at all levels of
the tree to allow this.

Figure 12 shows an initial mesh and substructures at

various levels in the assembly process. Note in Figure 12(a)

that the initial mesh contains some higher-level substruc-

tures; these arise not from assembling lowest-level IN ele-

ments, but from intermediate-level cells that were classified

as IN and tagged as substructures during stage 1 meshing.

(The identical stiffness matrices for lowest-level IN cells are

needed in the assembly process only when IN elements must
be assembled with elements in NIO cells.)

Solution, Figure 13 illustrates various stages in the solution

_cess. After loads and boundary conditions are attached to

the root structure, the FE solver computes the displace-

ments of all nodal points on the boundary, i.e., the nodal

points of the root substructure as in Figure 13(a), and then

traverses down the tree, recovering displacements of sub-
structurenodes ateach level.

The displacementsatalllevelsare saved indata records

accessedthroughthehierarchicalgad, and the lowest.level

displacementsare used to compute the stressesin the

elements.Figure 14 shows the displacementsand average

valueper elementofa stresscomponent. The displacements

inFigure15areexaggeratedforclarity.At]analyseshereare

linear-static,based on linearisoparametnc elements,For

nonlinearanalysis,where displacementscan be large,spatial

addressability is still maintained via a backward mapping

that associates each displaced element to the original grid.

Remarks

Our experience with this substructuring approach to anal-

ysis leads to some conclusions. The hierarchical gad used

for mesh generation has almost all of the data management

facilities needed for analytical substructuring. The comput-

ing time and storage requirements for internal-element as-

sembly are substantially reduced. We have not yet compared

the solution efficiency of our tree-traversal method with that
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of standard solvers, in part because we have made no effort

to optimize our code. However. the incremental reanalysis

facilities described later clearly outclass standard solvers

when it comes to adaptive analysis. Note that solution via

tree traversal does not require the normally expensive global

element- or node-numbering schemes used by standard

solvers to minimize bandwidth or wavefront. Finally. sub-

structunng based on trees lends itself naturally to parallel

processing.

In general, substructuring has proven to be efficient [18]

and our particular approach to substructuring seems promis-

ing for nonlinear as well as linear analysis. In many practical

problems (e.g. contact problems, fracture mechanics, and
localized plasticity), nonlinear behavior occurs in isolated

regions, and spatially localized analytical methods should

prove to be efficient. For example, during analysis, regions

that become nonlinear can be tagged in the grid and specially

handled. In other types of problems one might want dis-

placements and stresses only in small critical regions, and

again spatially localized methods seem very appropriate, i
I

Self.Adaptive Incremental Analysis I

Assume that a mesh has been constructed at the lowest !

level of the grid; the mesh has been analyzed and the results

stored in the grid (e.g. "f" in Figure 4): and evaluation of the
results (discussed next) has indicated that refinement is

needed in a particular spatial region, say that repre_en'ed b._

the mesh fragment in Figure 16(a).
Two avenues for refinement are available, h-refinement

and p-refinement. In p-refinement, illustrated in Figure
16(b). successively higher-order shape functions arc a_-;

signed to the element formulation. To refine a particular
element, the old stiffness matrix for the element is invalidat-

ed and a new matrix is computed from the ne_ _b,a._e

function. No new tree nodes are generated, but the size of
the stiffness matrix increases.

(a)
IqI. 11 Schemes fm m_ reflmmmnt.

-= ,,v

P-refinement (b)

) ----4)

& d k 4 k

H-refinement (c)
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In h-refinement existing elements are subdivided into
smaller elementsof the same type, as in Figure 16(c). To
improve the geometricaccuracy, localized h-refinementis
done on the original geometricmodel rather than on the
current finite element approximation. Thus. to refine a
particular element, one deletes the element, creates and
classifiesnew vertices and nodes, and inserts the smaller
new elementsinto the grid. Discontinuitiesof displacements
alongedgeswhere smallerelementsabut onlargerelements
areavoidedby usingconstraint equations.Theseare indicat-
ed by the circled nodes in Figure 16(c).

Figure L? shows examples of localized refinement. Note

Lthat successive h-refinements improve the geometric ap-proximation of the original solid. A maximum cross element

gradingratio of 2:I is maintained during refinement.
Storageforthe new entitiescreatedby h-refinementcould

be providedby addinga whole new bottomlayer to the grid,
but this would be wasteful unless very extensiveh-refine-
ment is needed. If the h-refinements are sparse, small
localizedexplicit schemesor linked-list methodsare more
et_cient.

Now assumethat the original mesh has been refined in a
few regions using the methods just described, that the
affected elements have been tagged, and that the refined
meshis to bereanalyzed.Clearly onewants to do incremen-
tal analysis, i.e., to use partial results from the earlier
analysis as much as possible. These results are available
through the hierarchicalgrid, for example,using a tree of K

Computo_ In Moohmnloll Engtnoorlng, Juiy 198667



K 2

K1

K 6 K? K 9

Original level K37

Fig. t 8

Modified substructure @

Incremental reaeeembly.

New offsprings O Unmodified substructure

matrices as in Figures 11 and 18.

The incremental FE assembler (Figure I) traverses the

tree and by examining the sons of each parent node, detects

new offspring and computes the appropnate stiffness matri-

ces IFigure 18). Stiffnesses for unmodified elements are

recovered from storage, and new and old stittnesses are
combined to form a modified substructure. If a node has no

new offspring, the complete old substructure is reused. The

incremental solver (Figure i) works similarly, inspecting

tags on data to distinguish valid and invalid old results and

reusing the former whenever possible.

Self.adaptive algorithm. Our current algorithm for control-

ling self-adaptive incremental analysis operates as follows

(see Figure 10). After a mesh (either initial or refined) has

been analyzed, error indicators are computed for each

element together with an estimate of the global error. If the

global error exceeds a specified limit, the system calls for

refinement and reanalysis in regions having large local

errors. This process continues automatically until the global

error estimate falls below the specified limit. This rather

simplistic control strategy seems to work in the cases we
have tested, but it is crude and some needed improvements

will be noted.

Considerable research has been conducted on the sources

and nature of errors in FE analysis, and on their relationship

to mesh refinement schemes [3--7]. Research pertinent to p-

refinement-has yielded s'lgnificant results, whereas results on

h-refinement have been based mainly on 1-D studies and are

fairly primitive.
Thus far we have done little research on errors and our

current error measures are crude. As in [5], our element

error indicator (ei) is merely the average of the stress jumps

(J,, normal and tangential) across each element's edges with

dimension (h) and assuming linear isoparametric elements:

, l-v h f
J2sd,r

normalized by the strain energy of the displaced model. Our

global error estimator is simply the sum of the element error
indicators. Figure 19 shows the computed values of the

element error indicators for a sample problem (a plate with a

hole under traction). Note that. in the vicinity of the hole.

the data imply high stress gradients because the error

indicators are high. Figure 19(b) show's an automatic refine-

ment resulting from this set of error indicators.

An improvement of the current algorithm would be to

replace the single global error indicator, which now serves as

a simple refine/don't refine switch, with a hierarchical series

of regional error indicators. These can be computed bottom-

up in the tree. and should force selective refinement in cases

where the overall average error is small but errors in small

regions are high. Additional improvements can be expected
as more is learned about the nature of errors in FE analysis.

Such research should also generate the information needed

to study the convergence properties of self-adaptive
schemes.

Advantages and Disadvantages

The main advantage of our approach is that mesh genera-

tion and mesh analysis are integrated and in effect collabo-

rate under the control of the error evaluator. Thus, the

masher only refines regions where refinement is needed, and

the analyzer only computes "what's new" about a refined

mesh. This type of efficient adaptive behavior is, in our

opinion, the key to efficient automatic FE analysis.
Some can argue that mesh generation and mesh analysis

should not be integrated because integration precludes

"mixing and matching", i.e. being able to analyze, through

simple interface translators, a mesh from "any" CAD sys-

tem or preprocessor using "any" popular analysis package.

We believe that by the 1990s, however, the benefits of

integration will outweigh those of mixing and matching.

Spatially localized substructuring is the driving principle

in both the mesh generator and mesh analyzer. This principle

derives from recursive spatial subdivision and is manifested

in our hierarchical grid and its underlying tree. The tree

(ill'July 1986,'ComputersIn Mechanical Engineering
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might be _iewed as a generalization of the structure de-

scribed in [19]. However, the latter is applied in subdomains

that are mapped to regular figures (squares and triangles),

and Rheinboldt's tree addresses the element partitioning

induced in the regular figures. By avoiding mapping we are

able to use the same structure for both meshing and analysis;

further, the regularity of our structure permits systematic

cell numbering and. hence, data access through calculated

addresses rather than through searching or looking in tables.

This "divide-and-conquer" principle enables hard prob-

lems (such as object decomposition and equation-set solu-

tion) to be decomposed into smaller, tractable problems via

spatial partitioning. We note that spatially localized sub-
structuring, and spatial addressability in general, provide

powerful mechanisms for coupling FE methods and results

to other applications (e.g., manufactunng process modeling)

through master data bases based on solid modeling.

Certain technical details already described, such as the

regularity of the interior mesh elements, are also advantages

of this approach.

Limitations. The main limitation of spatial subdivision

methods is that they produce meshes that are dependent on

orientation and position if the initial enclosing box is not

tight.

This is most easily seen in simple objects that have a

single,naturalorientation.As such objectsare rotatedin

fixedset of subdivisionaxes the induced meshes change.

oftendramatically.Figure20 isan example with a simile i

objectmeshed ina nonstandardorientation.SkilledanaI._sis

callsuch meshes "'unnatural."and note thatthey usually

containmore elementsthan "hand-made'" meshes.

Spatialsubdivisioncan be appliedin non-Cartesiando-

mains,For example, predominantlycircular2-D objectscan

be meshed efficientlyinpolarcoordinatesby subdKisionof

(r.8).The meshes so produced can be managed throughthe
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same hierarchical grid as is used for Cartesian subdivision

[20]. Various schemes have been proposed for mixing subdi-

vision strategies to cater to objects having both circular and

rectilinear regions, but none seem promising [20].

The essential counter arguments are that "unnatural"

meshes will produce valid results if the elements are valid,

and that these results should converge under adaptive re-

meshing and reanalysis to a single set of(correct) results that

is independent of position and orientation. Experimental

evidence indicates that our approach exhibits such qualities.

Still To Be Resolved

Over the long term. four areas will require extensive

theoretical work to make truly automatic FI:_ analysis possi-
ble:

• Error measures and indicators. Better measures than the

ones we use currently are needed, but they need not be

optimal if adaptive convergence can be guaranteed.

• Adaptive convergence. We have seen no experimental

evidence of divergence in the self-adaptive process, but

automatic analysis systems like ours will require human

monitoring to guard against divergence until stron8 conver-

gence properties can be guaranteed.

• Computational complexity. We think that spatial sub-

structuring techniques are asymptotically more et_icient than
the methods used in current solvers, but we have no results

to prove or i_isprov_'th"_-._plexity and convergence

analyses, when coupled, should provide bounds on the
inherent cost of finite element analysis.

• Nonlinear analysis. Thus far we have confined our efforts

to linear analysis but our approach to substructuring appears

promising for nonlinear analysis as well.

Two other issues are currently more pressing: extending

the systems to 3-D problems and handling loads and con-

straints automatically.

We have done 3-D work in parallel with our 2-D work. An

etticient publicly available interior mesher (octree generator)

has been created for solids describable in the PADL-2 solid

modeling system [21, 22]. Figure 21 shows an example. The

2-D spatial substructuring techniques for managing analysis.

adaptive remeshing, and reanalysis extend gracefully to 3-D.

and indeed most of the 2-D control code is directly usable in

3-D. The major unresolved problems are in stage 2 of the

automatic meshing procedure, i.e.. in the handling of NIO

cells. Promising methods for resolving these problems are

being studied.

The handling of loads and constraints is the only aspect of

2-D linear FE analysis that we have not yet automated. At

present, loads and constraints are applied manually when the

assembler has completed its initial pass and the solver is

about to begin its initial pass, i.e., at the transition between

Figures 12(d) and 13(al. This raises two different questions.

First, there are no fundamental barriers to automating the

application of loads and constraints at this stage of the

solution procedure. The problems are strictly of an engineer-

ing nature. Essentially, what mechanisms should be provid-
ed in a solid modeler to support the declaration of loads and

constraints (see Figure 1), and how should declarations be
translated into mesh-node vector values? The translation

problem is straightforward given a good solution to the

declaration problem, and an experimental system v.ith

enough power to handle load and constraint declarations _s

already running under 3-D PADL-2 [23].

The second question is deeper. Should loads and con-

straints be applied at the outset, where they will influence

construction of the initial mesh, rather than after an initml

mesh has been built? This is certainly the case when me,_he_

are constructed manually, and part of the analyst's skili is in
knowing how fine a mesh should be in a loaded or con-

strained region. Should our mesher be modified to mimic this

skill? The only possible gain we see is efficiency and this

might be marginal because the current system alread_ re-

fines meshes automatically to reflect loads and constraints

but only after it has passed from initial mesh anal._sJS to

adaptive remeshing and reanalysis.

In conclusion, we believe that the experimental system
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described here and its underlying principles represent a

milestone on the road to truly automatic finite element

analysis. I
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